Windows Subsystem for Linux (WSL) 2 introduces a significant architectural change as it is a full Linux kernel built by Microsoft, allowing Linux containers to run natively without emulation. With Docker Desktop running on WSL 2, users can leverage Linux workspaces and avoid having to maintain both Linux and Windows build scripts. Docker image build -t crossplat:linux. And then to build the Windows container, switch Docker into Windows mode, and issue this command: docker image build -t crossplat:win. Running the containers. To run the contains, we need to use docker run, and expose a port. I'm setting up the app in the container to listen on port 80, and exposing it. The Windows image is not covered, but you can learn more about it on the mssql-server-windows-developer Docker Hub page. Docker Engine 1.8+ on any supported Linux distribution or Docker for Mac/Windows. For more information, see Install Docker. Docker overlay2 storage driver. This is the default for most users.

Estimated reading time: 7 minutes

Windows Subsystem for Linux (WSL) 2 introduces a significant architectural change as it is a full Linux kernel built by Microsoft, allowing Linux containers to run natively without emulation. With Docker Desktop running on WSL 2, users can leverage Linux workspaces and avoid having to maintain both Linux and Windows build scripts. In addition, WSL 2 provides improvements to file system sharing, boot time, and allows access to some cool new features for Docker Desktop users.

Docker Desktop uses the dynamic memory allocation feature in WSL 2 to greatly improve the resource consumption. This means, Docker Desktop only uses the required amount of CPU and memory resources it needs, while enabling CPU and memory-intensive tasks such as building a container to run much faster.

Windows

Additionally, with WSL 2, the time required to start a Docker daemon after a cold start is significantly faster. It takes less than 10 seconds to start the Docker daemon when compared to almost a minute in the previous version of Docker Desktop.

Prerequisites

Before you install the Docker Desktop WSL 2 backend, you must complete the following steps:

  1. Install Windows 10, version 1903 or higher.
  2. Enable WSL 2 feature on Windows. For detailed instructions, refer to the Microsoft documentation.
  3. Download and install the Linux kernel update package.

Best practices

  • To get the best out of the file system performance when bind-mounting files, we recommend storing source code and other data that is bind-mounted into Linux containers (i.e., with docker run -v <host-path>:<container-path>) in the Linux file system, rather than the Windows file system. You can also refer to the recommendation from Microsoft.

    • Linux containers only receive file change events (“inotify events”) if the original files are stored in the Linux filesystem. For example, some web development workflows rely on inotify events for automatic reloading when files have changed.
    • Performance is much higher when files are bind-mounted from the Linux filesystem, rather than remoted from the Windows host. Therefore avoid docker run -v /mnt/c/users:/users (where /mnt/c is mounted from Windows).
    • Instead, from a Linux shell use a command like docker run -v ~/my-project:/sources <my-image> where ~ is expanded by the Linux shell to $HOME.
  • If you have concerns about the size of the docker-desktop-data VHDX, or need to change it, take a look at the WSL tooling built into Windows.
  • If you have concerns about CPU or memory usage, you can configure limits on the memory, CPU, Swap size allocated to the WSL 2 utility VM.
  • To avoid any potential conflicts with using WSL 2 on Docker Desktop, you must uninstall any previous versions of Docker Engine and CLI installed directly through Linux distributions before installing Docker Desktop.

Download

Download Docker Desktop Stable 2.3.0.2 or a later release.

Install

Ensure you have completed the steps described in the Prerequisites section before installing the Docker Desktop Stable 2.3.0.2 release.

  1. Follow the usual installation instructions to install Docker Desktop. If you are running a supported system, Docker Desktop prompts you to enable WSL 2 during installation. Read the information displayed on the screen and enable WSL 2 to continue.
  2. Start Docker Desktop from the Windows Start menu.
  3. From the Docker menu, select Settings > General.

  4. Select the Use WSL 2 based engine check box.

    If you have installed Docker Desktop on a system that supports WSL 2, this option will be enabled by default.

  5. Click Apply & Restart.
  6. Ensure the distribution runs in WSL 2 mode. WSL can run distributions in both v1 or v2 mode.

    To check the WSL mode, run:

    wsl.exe -l -v

    To upgrade your existing Linux distro to v2, run:

    wsl.exe --set-version (distro name) 2

    To set v2 as the default version for future installations, run:

    wsl.exe --set-default-version 2

  7. When Docker Desktop restarts, go to Settings > Resources > WSL Integration.

    The Docker-WSL integration will be enabled on your default WSL distribution. To change your default WSL distro, run wsl --set-default <distro name>.

    For example, to set Ubuntu as your default WSL distro, run wsl --set-default ubuntu.

    Macos high sierra 10.13.6 iso download. Optionally, select any additional distributions you would like to enable the Docker-WSL integration on.

    Note

    The Docker-WSL integration components running in your distro depend on glibc. This can cause issues when running musl-based distros such as Alpine Linux. Alpine users can use the alpine-pkg-glibc package to deploy glibc alongside musl to run the integration.

  8. Click Apply & Restart.

Develop with Docker and WSL 2

The following section describes how to start developing your applications using Docker and WSL 2. We recommend that you have your code in your default Linux distribution for the best development experience using Docker and WSL 2. After you have enabled WSL 2 on Docker Desktop, you can start working with your code inside the Linux distro and ideally with your IDE still in Windows. This workflow can be pretty straightforward if you are using VSCode.

  1. Open VSCode and install the Remote - WSL extension. This extension allows you to work with a remote server in the Linux distro and your IDE client still on Windows.
  2. Now, you can start working in VSCode remotely. To do this, open your terminal and type:

    wsl

    code .

    This opens a new VSCode connected remotely to your default Linux distro which you can check in the bottom corner of the screen.

    Alternatively, you can type the name of your default Linux distro in your Start menu, open it, and then run code .

  3. When you are in VSCode, you can use the terminal in VSCode to pull your code and start working natively from your Windows machine.

GPU support

Starting with Docker Desktop 3.1.0, Docker Desktop supports WSL 2 GPU Paravirtualization (GPU-PV) on NVIDIA GPUs. To enable WSL 2 GPU Paravirtualization, you need:

  • A machine with an NVIDIA GPU
  • The latest Windows Insider version from the Dev Preview ring
  • Beta drivers from NVIDIA supporting WSL 2 GPU Paravirtualization
  • Update WSL 2 Linux kernel to the latest version using wsl --update from an elevated commmand prompt
  • Make sure the WSL 2 backend is enabled in Docker Desktop

To validate that everything works as expected, run the following command to run a short benchmark on your GPU:

Feedback

Your feedback is very important to us. Please let us know your feedback by creating an issue in the Docker Desktop for Windows GitHub repository and adding the WSL 2 label.

WSL, WSL 2 Tech Preview, Windows Subsystem for Linux, WSL 2 backend Docker-->

Applies to: SQL Server (all supported versions) - Linux

Note

The examples shown below use the docker.exe but most of these commands also work with Podman. It provides the CLI similar to Docker container Engine. You can read more about podman here.

In this quickstart, you use Docker to pull and run the SQL Server 2017 container image, mssql-server-linux. Then connect with sqlcmd to create your first database and run queries.

Tip

If you want to run SQL Server 2019 containers, see the SQL Server 2019 version of this article.

Note

Starting with SQL Server 2019 CU3, Ubuntu 18.04 is supported.

In this quickstart, you use Docker to pull and run the SQL Server 2019 container image, mssql-server. Then connect with sqlcmd to create your first database and run queries.

Tip

This quickstart creates SQL Server 2019 containers. If you prefer to create SQL Server 2017 containers, see the SQL Server 2017 version of this article.

This image consists of SQL Server running on Linux based on Ubuntu 18.04. It can be used with the Docker Engine 1.8+ on Linux or on Docker for Mac/Windows. This quickstart specifically focuses on using the SQL Server on Linux image. The Windows image is not covered, but you can learn more about it on the mssql-server-windows-developer Docker Hub page.

Prerequisites

  • Docker Engine 1.8+ on any supported Linux distribution or Docker for Mac/Windows. For more information, see Install Docker.
  • Docker overlay2 storage driver. This is the default for most users. If you find that you are not using this storage provider and need to change, see the instructions and warnings in the docker documentation for configuring overlay2.
  • Minimum of 2 GB of disk space.
  • Minimum of 2 GB of RAM.
  • System requirements for SQL Server on Linux.

Pull and run the 2017 container image

Before starting the following steps, make sure that you have selected your preferred shell (bash, PowerShell, or cmd) at the top of this article.

  1. Pull the SQL Server 2017 Linux container image from Microsoft Container Registry.

    Tip

    If you want to run SQL Server 2019 containers, see the SQL Server 2019 version of this article.

    The previous command pulls the latest SQL Server 2017 container image. If you want to pull a specific image, you add a colon and the tag name (for example, mcr.microsoft.com/mssql/server:2017-GA-ubuntu). To see all available images, see the mssql-server Docker hub page.

    For the bash commands in this article, sudo is used. On macOS, sudo might not be required. On Linux, if you do not want to use sudo to run Docker, you can configure a docker group and add users to that group. For more information, see Post-installation steps for Linux.

  2. To run the container image with Docker, you can use the following command from a bash shell (Linux/macOS) or elevated PowerShell command prompt.

    Note

    If you are using PowerShell Core, replace the double quotes with single quotes.

    Note

    The password should follow the SQL Server default password policy, otherwise the container can not setup SQL server and will stop working. By default, the password must be at least 8 characters long and contain characters from three of the following four sets: Uppercase letters, Lowercase letters, Base 10 digits, and Symbols. You can examine the error log by executing the docker logs command.

    By default, this creates a container with the Developer edition of SQL Server 2017. The process for running production editions in containers is slightly different. For more information, see Run production container images.

    The following table provides a description of the parameters in the previous docker run example:

    ParameterDescription
    -e 'ACCEPT_EULA=Y'Set the ACCEPT_EULA variable to any value to confirm your acceptance of the End-User Licensing Agreement. Required setting for the SQL Server image.
    -e 'SA_PASSWORD=<[email protected]>'Specify your own strong password that is at least 8 characters and meets the SQL Server password requirements. Required setting for the SQL Server image.
    -p 1433:1433Map a TCP port on the host environment (first value) with a TCP port in the container (second value). In this example, SQL Server is listening on TCP 1433 in the container and this is exposed to the port, 1433, on the host.
    --name sql1Specify a custom name for the container rather than a randomly generated one. If you run more than one container, you cannot reuse this same name.
    -h sql1Used to explicitly set the container hostname, if you don't specify it, it defaults to the container ID which is a randomly generated system GUID.
    -dRun the container in the background (daemon)
    mcr.microsoft.com/mssql/server:2017-latestThe SQL Server 2017 Linux container image.
  3. To view your Docker containers, use the docker ps command.

    You should see output similar to the following screenshot:

  4. If the STATUS column shows a status of Up, then SQL Server is running in the container and listening on the port specified in the PORTS column. If the STATUS column for your SQL Server container shows Exited, see the Troubleshooting section of the configuration guide.

The -h (host name) parameter as discussed above, changes the internal name of the container to a custom value. This is the name you'll see returned in the following Transact-SQL query:

Setting -h and --name to the same value is a good way to easily identify the target container.

  1. As a final step, change your SA password because the SA_PASSWORD is visible in ps -eax output and stored in the environment variable of the same name. See steps below.

Pull and run the 2019 container image

Before starting the following steps, make sure that you have selected your preferred shell (bash, PowerShell, or cmd) at the top of this article.

  1. Pull the SQL Server 2019 Linux container image from Microsoft Container Registry.

    Note

    If you are using PowerShell Core, replace the double quotes with single quotes.

    Tip

    This quickstart uses the SQL Server 2019 Docker image. If you want to run the SQL Server 2017 image, see the SQL Server 2017 version of this article.

    The previous command pulls the SQL Server 2019 container image based on Ubuntu. To instead use container images based on RedHat, see Run RHEL-based container images. To see all available images, see the mssql-server-linux Docker hub page.

    For the bash commands in this article, sudo is used. On macOS, sudo might not be required. On Linux, if you do not want to use sudo to run Docker, you can configure a docker group and add users to that group. For more information, see Post-installation steps for Linux.

  2. To run the container image with Docker, you can use the following command from a bash shell (Linux/macOS) or elevated PowerShell command prompt.

    Note

    The password should follow the SQL Server default password policy, otherwise the container can not setup SQL server and will stop working. By default, the password must be at least 8 characters long and contain characters from three of the following four sets: Uppercase letters, Lowercase letters, Base 10 digits, and Symbols. You can examine the error log by executing the docker logs command.

    By default, this creates a container with the Developer edition of SQL Server 2019.

    The following table provides a description of the parameters in the previous docker run example:

    ParameterDescription
    -e 'ACCEPT_EULA=Y'Set the ACCEPT_EULA variable to any value to confirm your acceptance of the End-User Licensing Agreement. Required setting for the SQL Server image.
    -e 'SA_PASSWORD=<[email protected]>'Specify your own strong password that is at least 8 characters and meets the SQL Server password requirements. Required setting for the SQL Server image.
    -p 1433:1433Map a TCP port on the host environment (first value) with a TCP port in the container (second value). In this example, SQL Server is listening on TCP 1433 in the container and this is exposed to the port, 1433, on the host.
    --name sql1Specify a custom name for the container rather than a randomly generated one. If you run more than one container, you cannot reuse this same name.
    -h sql1Used to explicitly set the container hostname, if you don't specify it, it defaults to the container ID which is a randomly generated system GUID.
    mcr.microsoft.com/mssql/server:2019-latestThe SQL Server 2019 Ubuntu Linux container image.
  3. To view your Docker containers, use the docker ps command.

    You should see output similar to the following screenshot:

  4. If the STATUS column shows a status of Up, then SQL Server is running in the container and listening on the port specified in the PORTS column. If the STATUS column for your SQL Server container shows Exited, see Troubleshooting SQL Server Docker containers.

The -h (host name) parameter as discussed above, changes the internal name of the container to a custom value. This changes the internal name of the container to a custom value. This is the name you'll see returned in the following Transact-SQL query:

Setting -h and --name to the same value is a good way to easily identify the target container.

  1. As a final step, change your SA password because the SA_PASSWORD is visible in ps -eax output and stored in the environment variable of the same name. See steps below.

Change the SA password

The SA account is a system administrator on the SQL Server instance that gets created during setup. After creating your SQL Server container, the SA_PASSWORD environment variable you specified is discoverable by running echo $SA_PASSWORD in the container. For security purposes, change your SA password.

  1. Choose a strong password to use for the SA user.

  2. Use docker exec to run sqlcmd to change the password using Transact-SQL. In the following example, replace the old password, <YourStrong!Passw0rd>, and the new password, <YourNewStrong!Passw0rd>, with your own password values.

Connect to SQL Server

Pro

The following steps use the SQL Server command-line tool, sqlcmd, inside the container to connect to SQL Server.

  1. Use the docker exec -it command to start an interactive bash shell inside your running container. In the following example sql1 is name specified by the --name parameter when you created the container.

  2. Once inside the container, connect locally with sqlcmd. Sqlcmd is not in the path by default, so you have to specify the full path.

    Tip

    You can omit the password on the command-line to be prompted to enter it.

  3. If successful, you should get to a sqlcmd command prompt: 1>.

Create and query data

The following sections walk you through using sqlcmd and Transact-SQL to create a new database, add data, and run a query.

Create a new database

Windows

The following steps create a new database named TestDB.

  1. From the sqlcmd command prompt, paste the following Transact-SQL command to create a test database:

  2. On the next line, write a query to return the name of all of the databases on your server:

  3. The previous two commands were not executed immediately. Type GO on a new line to execute the previous commands:

Insert data

Next create a new table, Inventory, and insert two new rows.

  1. From the sqlcmd command prompt, switch context to the new TestDB database:

  2. Create new table named Inventory:

  3. Insert data into the new table:

  4. Type GO to execute the previous commands:

Select data

Now, run a query to return data from the Inventory table.

  1. From the sqlcmd command prompt, enter a query that returns rows from the Inventory table where the quantity is greater than 152:

  2. Execute the command:

Linux

Exit the sqlcmd command prompt

  1. To end your sqlcmd session, type QUIT:

  2. To exit the interactive command-prompt in your container, type exit. Your container continues to run after you exit the interactive bash shell.

Connect from outside the container

You can also connect to the SQL Server instance on your Docker machine from any external Linux, Windows, or macOS tool that supports SQL connections.

The following steps use sqlcmd outside of your container to connect to SQL Server running in the container. These steps assume that you already have the SQL Server command-line tools installed outside of your container. The same principles apply when using other tools, but the process of connecting is unique to each tool.

  1. Find the IP address for the machine that hosts your container. On Linux, use ifconfig or ip addr. On Windows, use ipconfig.

  2. For this example, install the sqlcmd tool on your client machine. For more information, see Install sqlcmd on Windows or Install sqlcmd on Linux.

  3. Run sqlcmd specifying the IP address and the port mapped to port 1433 in your container. In this example, that is the same port, 1433, on the host machine. If you specified a different mapped port on the host machine, you would use it here. You will also need to open the appropriate inbound port on your firewall to allow the connection.

  4. Run Transact-SQL commands. When finished, type QUIT.

Other common tools to connect to SQL Server include:

Remove your container

If you want to remove the SQL Server container used in this tutorial, run the following commands:

Warning

Docker Linux On Windows Host

Stopping and removing a container permanently deletes any SQL Server data in the container. If you need to preserve your data, create and copy a backup file out of the container or use a container data persistence technique.

Docker demo

After you have tried using the SQL Server container image for Docker, you might want to know how Docker is used to improve development and testing. The following video shows how Docker can be used in a continuous integration and deployment scenario.

Next steps

Docker Linux On Windows 8.1

For a tutorial on how to restore database backup files into a container, see Restore a SQL Server database in a Linux Docker container. Explore other scenarios, such as running multiple containers, data persistence, and troubleshooting.

Docker Linux On Windows Bootable

Also, check out the mssql-docker GitHub repository for resources, feedback, and known issues.

Coments are closed
Scroll to top